Neural network models of perceptual learning of angle discrimination

نویسندگان

  • Germán Mato
  • Haim Sompolinsky
چکیده

We study neural network models of discriminating between stimuli with two similar angles, using the two-alternative forced choice (2AFC) paradigm. Two network architectures are investigated: a two-layer perceptron network and a gating network. In the two-layer network all hidden units contribute to the decision at all angles, while in the other architecture the gating units select, for each stimulus, the appropriate hidden units that will dominate the decision. We find that both architectures can perform the task reasonably well for all angles. Perceptual learning has been modeled by training the networks to perform the task, using unsupervised Hebb learning algorithms with pairs of stimuli at fixed angles theta and delta theta. Perceptual transfer is studied by measuring the performance of the network on stimuli with theta' not equal to theta. The two-layer perceptron shows a partial transfer for angles that are within a distance a from theta, where a is the angular width of the input tuning curves. The change in performance due to learning is positive for angles close to theta, but for magnitude of theta-theta' approximately a it is negative, i.e., its performance after training is worse than before. In contrast, negative transfer can be avoided in the gating network by limiting the effects of learning to hidden units that are optimized for angles that are close to the trained angle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Position Variance, Recurrence and Perceptual Learning

Stimulus arrays are inevitably presented at different positions on the retina in visual tasks, even those that nominally require fixation. In particular, this applies to many perceptual learning tasks. We show that perceptual inference or discrimination in the face of positional variance has a structurally different quality from inference about fixed position stimuli, involving a particular, qu...

متن کامل

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models

Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...

متن کامل

Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)

Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 1996